Appendix B

EQUIPMENT SPECIFICATION FORMS

These equipment specification forms have been developed in order to simplify both the request for specifications and the comparison of different vendors' specifications. Copies of the General Information (see following page) and all pertinent forms are sent to each vendor under consideration when new equipment is to be purchased. Forms are included for the following equipment:

CONTENTS

Generators (3 pages)
X-ray Tubes
X-ray Tube Housings
Heat Integrators
Image Intensifiers (2 pages)
Video Systems
Disc or Tape Recorders
Cameras
Exposure Control Systems
Grids
Video Systems Performance
Camera Systems or Changer Performance

These forms may be copied for individual use without the permission of the authors or publisher (with appropriate credit given). They may not be copied for resale.
GENERAL INFORMATION

The attached forms are provided so that we may more fairly evaluate your specifications compared to those of your competitors. It is hoped that the majority of the specification data are readily available and that it will not be necessary to specially test the equipment that is under consideration. If for any reason you feel that you cannot supply certain data, please let us know, stating the reasons that such information is not available. If you feel that your product is not properly represented by the data requested in these forms, please let us know and provide us with what you believe is the appropriate data.

The following guidelines should assist you in preparing the necessary information for our evaluation:

1. All blanks on the attached forms must be filled in for the equipment upon which you are bidding.
2. All data must be provided in the units noted.
3. We have not specified the methods of evaluation; therefore it will be necessary for you to provide the appropriate conditions for the tests you have carried out (e.g., kVp, mA, exposure time, focal spot size, scattering material (if any), geometry, test target used, etc.).
4. The specification data provided on these forms will become part of the purchase order and, hence, the specifications for acceptance.
5. If alternate (optional) equipment is to be considered a complete evaluation form will be required for each alternate item. For example, if two generators are being considered, one bid and the other as an option, two sets of the generator specification forms must be provided, one for each generator.
6. After completion of the forms please number all pages (e.g., page 1 of 10) to assure that none of your material is overlooked.
7. Please provide all other available data and specifications for equipment quoted (e.g., single exposure rating, anode thermal characteristic, housing cooling, angiographic rating, cineradiographic rating, and fluoroscopic rating charts for x-ray tubes and housings).
8. On your quote, please provide list and net price for all units of equipment comprising a component of the system (e.g., spot film camera system).
9. Price quotes for components should include the cost of necessary additional fixtures. For example, the quote price for a spot film camera system should include the cost of all mounting, support, and interfacing components.
10. These forms along with your detailed quotation and other supporting information should be supplied to ______________________________. A total of three copies would be appreciated.

If you have any questions concerning the forms, the information requested, or any other matters, please contact ______________________________.
Manufacturer

Model Number

Power Requirements

Preferred Mains Voltage

Single or Three Phase

kVA

V

Ø

kVA

kVp

Push-button or Dial

Minimum kVp

Maximum kVp

Steps

Specified Accuracy

mA

Push-button or Dial

Minimum mA

Maximum mA

mA Stations—Small Focus

Large Focus

Specified Accuracy

Timing

Type (e.g., forced extinction)

Manual—Minimum

10 msec

100 msec

Automatic—Minimum

10 msec

100 msec

msec ± msec at kVp mA
Timing (cont.)

Maximum Exposure Time
Is maximum exposure time adjustable?
__ sec __ yes __ no

Exposure Time Settings

Phase-In Interrogation Time
__ msec at __ kVp and __ mA

Maximum Exposures per Second
__ exposures/second

Exposure Time Display (Type)

Falling Load
__ yes __ no

kW Ratings

at 70 kVp __ kW
80 kVp __ kW
90 kVp __ kW
100 kVp __ kW
110 kVp __ kW
125 kVp __ kW
150 kVp __ kW

Premagnetization Time
__ msec

Time Sharing Capability
__ yes __ no

Fluoroscopy

kVp Range __ kVp to __ kVp
Steps

mA Range __ mA to __ mA
Steps

Timer Range __ min to __ min
Steps

Automatic Exposure Control __ kVp only __ mA only __ mA-kVp
combined
Focal Spot Size Selection

Available Independent of mA?

_________ yes _________ no

Rotor Speeds

Available

_________ rpm

_________ rpm

Percentage Ripple
(Measured as x-ray output)

_________ % at 80 kVp, 100 mA

_________ % at 80 kVp, 200 mA

_________ % at 80 kVp, 400 mA

_________ % at 80 kVp, 600 mA

_________ % at 80 kVp, 800 mA

_________ % at 80 kVp, 1000 mA
X-RAY TUBES

Manufacturer

Tube Model #

Focal Spot Size

<table>
<thead>
<tr>
<th></th>
<th>Unbiased</th>
<th>Biased</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Small</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Large</td>
<td>mm</td>
<td>mm</td>
</tr>
</tbody>
</table>

Will you accept star measurements for testing purposes? Yes/No

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Focal Spot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Focal Spot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

kW Rating

<table>
<thead>
<tr>
<th></th>
<th>kVp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td></td>
</tr>
</tbody>
</table>

Anode Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle—Small Focal Spot</td>
<td>°</td>
</tr>
<tr>
<td>Large Focal Spot</td>
<td>°</td>
</tr>
<tr>
<td>Heat Capacity</td>
<td>HU</td>
</tr>
<tr>
<td>Cooling Rate</td>
<td>HU/min (maximum)</td>
</tr>
</tbody>
</table>

Rotor Speed Requirements

<table>
<thead>
<tr>
<th></th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroscopic—Small Focal Spot</td>
<td></td>
</tr>
<tr>
<td>Large Focal Spot</td>
<td></td>
</tr>
<tr>
<td>Radiographic—Small Focal Spot</td>
<td></td>
</tr>
<tr>
<td>Large Focal Spot</td>
<td></td>
</tr>
</tbody>
</table>

Bias Power Supply

<table>
<thead>
<tr>
<th></th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias Voltage</td>
<td></td>
</tr>
<tr>
<td>Number of Tubes per Supply</td>
<td></td>
</tr>
</tbody>
</table>
X-RAY TUBE HOUSINGS

Manufacturer

Housing Model #

Housing Characteristics

Heat Capacity

Cooling Rate—Without Fan

With Fan

With Liquid Circulation System

_________________ HU

_________________ HU/min (maximum)

_________________ HU/min (maximum)

_________________ HU/min (maximum)
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model #</td>
<td></td>
</tr>
<tr>
<td>Number of Tubes</td>
<td></td>
</tr>
</tbody>
</table>

Display and Warning

<table>
<thead>
<tr>
<th>Digital or Analog Display</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Tubes Simultaneously?</td>
<td>yes</td>
</tr>
<tr>
<td>% of Maximum or % Remaining</td>
<td></td>
</tr>
<tr>
<td>Audible Overload Indicator</td>
<td>yes</td>
</tr>
<tr>
<td>System Lock at Overload?</td>
<td>yes</td>
</tr>
<tr>
<td>Manual Lock Override?</td>
<td>yes</td>
</tr>
</tbody>
</table>
IMAGE INTENSIFIERS (page 1)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model #</td>
<td></td>
</tr>
</tbody>
</table>

Input Field Size

<table>
<thead>
<tr>
<th>Size</th>
<th>in</th>
<th>±</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output Phosphor Size

<table>
<thead>
<tr>
<th>Size</th>
<th>in</th>
<th>±</th>
<th>in</th>
</tr>
</thead>
</table>

Phosphor Types

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

X-ray Absorption at 60 keV

<table>
<thead>
<tr>
<th>Absorption</th>
<th>%</th>
</tr>
</thead>
</table>

Resolution

<table>
<thead>
<tr>
<th>Field—Center</th>
<th>cycles/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field—Center</th>
<th>cycles/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field—Center</th>
<th>cycles/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
</tr>
</tbody>
</table>

Please state measurement technique (e.g., kVp, target type, scatter).
Brightness Falloff *

<table>
<thead>
<tr>
<th>Field</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Field</td>
<td>%</td>
</tr>
<tr>
<td>Medium Field</td>
<td>%</td>
</tr>
<tr>
<td>Large Field</td>
<td>%</td>
</tr>
</tbody>
</table>

Contrast Sensitivity *

<table>
<thead>
<tr>
<th>Field</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Field</td>
<td>%</td>
</tr>
<tr>
<td>Medium Field</td>
<td>%</td>
</tr>
<tr>
<td>Large Field</td>
<td>%</td>
</tr>
</tbody>
</table>

Contrast Ratio *

<table>
<thead>
<tr>
<th>Field</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Field</td>
<td>%</td>
</tr>
<tr>
<td>Medium Field</td>
<td>%</td>
</tr>
<tr>
<td>Large Field</td>
<td>%</td>
</tr>
</tbody>
</table>

Conversion Factor *

<table>
<thead>
<tr>
<th>Field</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Field</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flare or Veiling Glare *

<table>
<thead>
<tr>
<th>Field</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Field</td>
<td>%</td>
</tr>
<tr>
<td>Medium Field</td>
<td>%</td>
</tr>
<tr>
<td>Large Field</td>
<td>%</td>
</tr>
</tbody>
</table>

Please state measurement technique.
VIDEO SYSTEMS

Video Tube (Please provide manufacturer's data sheet)

- **Manufacturer**
- **Type (e.g., vidicon, lead-oxide vidicon, or plumbicon)**
- **Model #**
- **Target Voltage** ___________ V

Camera–Video Tube–Amplifier Chain

- **Manufacturer**
- **Model #**
- **Bandwidth** ___________ MHz at –3dB
- **Signal-to-Noise Ratio** ___________ dB
- **Scan Lines Per Frame**
- **Shading Correction?** yes ___________ no
- **Gamma Correction?** yes ___________ no
- **Other Signal Processing (e.g., white clip or crush)?**
 - **Describe**
- **Composite Video Signal** ___________ mV
- **Sync Pulse** ___________ mV
- **RS/170 Standard Signal?** yes ___________ no
- **Does video signal contain serrations and equalizing pulses?** yes ___________ no
- **AGC or ATC?**
- **Aspect Ratio (4:3, 1:1, etc.)**

Monitor

- **Manufacturer**
- **Model #**
- **Size (diagonal)** ___________ in
- **Bandwidth** ___________ MHz at –3dB
- **Signal-to-Noise Ratio** ___________ dB
- **Black Level Clamping** yes ___________ no
DISC OR TAPE RECORDERS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model #</td>
<td></td>
</tr>
<tr>
<td>Type (U-matic, hard disc, floppy disc, etc.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>MHz at -3 dB</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signal-to-Noise Ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner track</td>
<td>dB</td>
</tr>
<tr>
<td>Outer track</td>
<td>dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Number of Images</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fields</td>
<td>frames</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real-Time Recording</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames/sec — Record</td>
<td>fps</td>
</tr>
<tr>
<td>Playback</td>
<td>fps</td>
</tr>
<tr>
<td>Is (single frame) playback field or frame?</td>
<td>yes</td>
</tr>
<tr>
<td>Last Image Hold?</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composite Video Signal</th>
<th>mV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sync Pulse</th>
<th>mV</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RS-170 Standard Signal?</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Does video signal contain serrations and equalizing pulses?</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Automatic Video Level Control</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
</table>
CAMERAS

Manufacturer

Model #

Film Size

Image Size

Film Holders

Maximum Input Capacity

Maximum Output Capacity

Frame Rates

Lens

Focal Length

Widest Aperture

f/# Stops Available

Continuous or Waterhouse

Resolution* (Camera only—i.e., lens plus film during maximum speed run)

*Please state measurement technique.
EXPOSURE CONTROL SYSTEMS

Fluoroscopic

Manufacturer

Model #

Type (ionization, PMT, peak video, average video)

% of Image Area View for Exposure Control

Technique (mA-kVp variable, mA variable, kVp variable, etc.)

Manual Overrides (Types and Techniques)

Spot Film and/or Spot Film Cameras (Specify)

Manufacturer

Model #

Type (ionization, screen-PMT, etc.)
If screen, what type?

Technique (Fixed mA and kVp with variable time, floating mA and/or kVp with fluoro, etc.)

Maximum Exposure Time

Minimum Exposure Time

Manual Technique (mA and/or kVp and/or Time)

Density Selector

Type

Number of Steps

% Exposure (not density) Change per Step
GRIDS

Application
(Bucky, fluoro, image intensifier, film changer, etc.)

Manufacturer

Model #

Ratio

Lines/cm

Lead Content

Focus Range

Removable?

yes no
VIDEO SYSTEMS PERFORMANCE

Total Video Chain Including Image Intensifier
but Excluding Image Storage Devices

<table>
<thead>
<tr>
<th>Metric</th>
<th>Small Field</th>
<th>Medium Field</th>
<th>Large Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHz at -3 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brightness Fall-Off*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast Sensitivity*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast Ratios*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flare or Veiling Glare*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution*—Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Video Chain Including Image Intensifier
and Image Storage Devices

<table>
<thead>
<tr>
<th>Metric</th>
<th>Small Field</th>
<th>Medium Field</th>
<th>Large Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHz at -3 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal-to-Noise Ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Track</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Track</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution—Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycles/mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Please state measurement technique.
CAMERA SYSTEMS OR CHANGER PERFORMANCE

Image Intensifier—Camera, Spot Film System, or Film Changer

<table>
<thead>
<tr>
<th>Resolution*</th>
<th>Small Field</th>
<th>Medium Field</th>
<th>Large Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Frame—Center</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>50%</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>Edge</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
</tbody>
</table>

Nominal Frame Rate (_____ fps)

<table>
<thead>
<tr>
<th></th>
<th>Small Field</th>
<th>Medium Field</th>
<th>Large Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>50%</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>Edge</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
</tbody>
</table>

Maximum Frame Rate (_____ fps)

<table>
<thead>
<tr>
<th></th>
<th>Small Field</th>
<th>Medium Field</th>
<th>Large Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>50%</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
<tr>
<td>Edge</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
<td>__________ cycles/mm</td>
</tr>
</tbody>
</table>

Brightness Falloff*

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________ %</td>
<td>__________ %</td>
<td>__________ %</td>
</tr>
</tbody>
</table>

Contrast Sensitivity*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Contrast Ratio*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Flare or Veiling Glare*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

*Please state measurement technique.
INDEX

ABC, see Automatic brightness control
Abdomen phantom, 8, 9
ADC, see Automatic dose control
AGC, see Automatic gain control
Aluminum
 half-value layer and, 70–71, 90–94
 mR/mAs and, 97, 98
Angiographic equipment, 162, 169–173
Angiographic ratings, for x-ray tube, 75, 76
Angulation indicator, visual and manual quality control check for, 53, 54
Anode thermal characteristics, for x-ray tube, 73–74
Aprons, visual and manual quality control check for, 54
Ardran and Crookes cassette, for kVp check, 95
Attenuation measurements, 179–178, 186–188
Automatic brightness control (ABC), for fluoroscopic imaging systems, 127, 139–140
Automatic chest units, phototiming system checked with, 121
Automatic dose control (ADC), for fluoroscopic imaging systems, 127, 139–140
Automatic gain control (AGC), for fluoroscopic imaging systems, 127, 140–141
Automatic processors, 33
 see also Photographic processing equipment
Average value (X), 20, 21
Backup timer check test, 102, 122, 123
Base-plus-fog levels, 33
Basic homogeneous phantom test, 52, 60–62
 see also Patient Equivalent Phantom
Basic tomography test, 52, 62–65
Battery-operated portable radiographic equipment, 161, 163, 164
Bromide ions, 37
Bucky alignment tests, 70, 84–90, 91
Bucky center light, visual and manual quality control check for, 53
Bucky lock, visual and manual quality control check for, 53
Bucky radiographs, basic homogeneous phantom test for, 52, 60–62
Bucky slot cover, visual and manual quality control check for, 54
Bucky tray, ionization chamber for, 11, 186
Cables, High Tension Cable Check for, 51, 53
 Calibration, 6
 frequency of, 5
Capacitor discharge equipment
 mR/mAs measurement of, 99
 portable and permanent, 163, 164
Cardiac catheterization laboratory, photographic processor for, 33
C-arm systems
 low-contrast fluoroscopic test for, 156
 maximum fluoroscopic exposure rate for, 135, 138
Cart, for equipment, 13, 15, 16
Cassette
 attenuation measurement for fronts, 186–187
 image receptor speed and, 51, 55
 screen-film contact and, 51–52, 55–58
Cassette lock, visual and manual quality control check for, 53
Center stop, visual and manual quality control check for, 54
Chest phantom, 8, 10
Cine film processor, 33
Cineradiographic ratings, for x-ray tube, 75–77
Cine system, 162, 171–173
 resolution, 128, 151–152
 setting and maintaining exposure, 128, 147, 149–150
Collimator
 half-value layer measurements and, 70–71, 90–94
 x-ray light field alignment and, 70, 84–90, 91
Compression device, visual and manual quality control check for, 54
Compression spoon, visual and manual quality control check for, 54
Contrast measurements, video waveform measurements for, 157, 159, 160
Control charts, 20–23, 25–26
Control limit
 establishing, 22
 lower, 20–22
 upper, 20–22
Conventional tomography, see Tomography
Copy film, 179, 188–190
Cross-over of control emulsions, 38
Cut-film angiographic equipment, 170–171
Darkroom, fog caused by, 33–35
 quality control check for, 42–43
Densitometer
 fog measured with, 35
 for image receptor speed, 51, 55
Developer, 37

245
Dip test, for photographic chemistry, 38
Direct readout dosimeters, see Dosimeters
Dosimeter, 11–12, 14
direct readout
for fluoroscopic systems, 125, 134, 136
for mRmAs, 97, 101, 116–119
exposure consistency and, 70, 89
for exposure timing, 96, 109–111
for half-value layer measurement, 91–92
pen-type, 11, 125
for fluoroscopic systems, 125, 134, 136
"Drift," 21

EIA, see Electronics Industries Association
Electronic noise, in fluoroscopic images, 128, 144
Electronics Industries Association (EIA), Standard RS-170, 125, 175, 176
Energy dependence, of ionization chambers, 11
Engineer, role of in quality control, 3–4
see also Service engineer
Entrance exposure
aluminum filtration and, 70–71
of cine system, 149

Equipment
checking frequency, 4–5
needs
cart, 13, 15, 16
dosimeter, 11–12, 14
forms and charts, 12
patient equivalent phantom, 7–11, 12–13
service request form, 12–13
Errors, random and systematic, 20
Exposed film, sensitivity of, 35
Exposure consistency, 70, 84–90, 91
Exposure timing, for x-ray generators, 95–96, 107–111
Extra-focal radiation, mRmAs measurements and, 100
Extremity cassette screen-film system, for x-ray tube focal spot size, 69–70
Extremity phantom, 8, 10

Field light, visual and manual quality control check for, 53
Films, dosimeter for evaluating, 11

Film viewboxes, 180
Fixer, 37
Fixer contamination of developer, 37
Flare measurements, video waveform measurement for, 157, 159, 160
Float and power top switches, visual and manual quality control check for, 53
Flood replenishment, 40–41, 48–49
Fluorescent lights, fog caused by, 34
Fluoroscopic drapes, visual and manual quality control check for, 54
Fluoroscopic grid, visual and manual quality control check for, 54
Fluoroscopic imaging systems, 125
automatic brightness control for, 127, 139–140
automatic dose control for, 127, 139–140
automatic gain control for, 127, 140–141
fluoroscopic resolution, 128, 150–151, 152, 153
image size and beam limitation, 125–126, 130–133
lag in, 128, 144–145, 148
low-contrast fluoroscopic test, 128–129, 153–155, 156, 157, 158
lowering exposure rates, 179, 191–192
maximum fluoroscopic exposure rate, 126, 133–136, 137, 138
noise in, 128, 144, 145, 146, 147
resolution, 128, 150–153
standard exposure levels, 126, 136–138, 139, 140
dosimeter for, 11
lowering, 179–180, 190–192
television monitors for, 127, 141–142
videodisc recording system for, 127–128
videotape recording system for, 127, 128, 142–143
video waveform monitoring, 129, 155–160
see also Photofluoroscopy films; Cine system
Fluoroscopic monitor, visual and manual quality control check for, 54
Fluoroscopic ratings, for x-ray tube, 77–78
Fluoroscopic shutters, visual and manual quality control check for, 54

Fluoroscopic timer, visual and manual quality control check for, 54
Fluoroscopic tower locks, visual and manual quality control check for, 54
Fluoroscopic x-ray tube, half-value layer measurement of, 91–92
Focal spot size measurement, of x-ray tube, 69–70, 79–84
Fog
base-plus-fog, 33
checking for, 34–35, 42–43
darkroom causing, 33–35
Footboard, visual and manual quality control check for, 54
"Frame-grabbing" modes, video hard-copy cameras and, 176

General purpose dosimeter, 11
Generator, see x-ray generator
Generator-operated portable radiographic equipment, 163
Gloves, visual and manual quality control check for, 54
Gonad shields, visual and manual quality control check for, 54
Gray scale, raster blending and, 176, 177, 178
Grids, attenuation measurements for, 11, 186–188

Half-value layer (HVL) measurements, for x-ray tubes, 70–71, 90–94
dosimeter for, 11
Hand switch placemat, visual and manual quality control check for, 54
Heel effect, 16–17
High-tension cables check, 51, 53
visual and manual quality control check for, 53
Housing cooling chart, for x-ray tube, 74–75
HVL, see Half-value layer measurement

Image quality tests, for product comparisons, 176–178, 182–186
Image receptor alignment, 89–90, 91
Image receptor speed, 51, 55
Indicator lights, fog caused by, 34
In-house equipment service, 5–6
service request form for, 12–13
Ionization chamber
dosimeter used with, 11, 14
position of, 16–17

Joint Commission on the Accreditation of Hospitals (JCAH), quality control and, 1

kVp
for mR/mAs measurement, 100–101
x-ray generator evaluated, 95, 102–103, 104–106
repeatability and, 101–102

Lag, in fluoroscopic imaging, 128, 144–145, 148
LCL, see Lower control limit
Lead aprons, attenuation measurement for, 186–187
Light field
x-ray field alignment with, 52, 58–60, 70, 84–90, 91
Lights, visual and manual quality control check for, 54
Linearity, see x-ray generator
Locks, visual and manual quality control check for, 53
Low contrast fluoroscopic test, 128–129, 153–155, 156, 157, 158
Lower control limit (LCL), 20, 21, 22

mA
exposure time and, 101
selection of for mR/mAs measurements, 100
x-ray generator evaluated, 97, 102, 103

Maintenance log, 22, 24
maintenance of photographic processor recorded in, 39
Mammography, 102, 124
ionization chamber used in, 11
Manual quality control checks, 51, 53–55
Manual spinning top, for exposure timing, 95, 107–108
Maximum fluoroscopic exposure rate, 126, 133–136, 137
Measuring caliper, visual and manual quality control check for, 53
Mechanized processors, 33
see also Photographic processing equipment
Mesh test pattern, 150, 151, 152, 153
Meters, visual and manual quality control check for, 54

Minimum exposure time test, 122–123
Mirror-optic fluoroscopic system, low-contrast fluoroscopic test for, 154–155
Motion smoothness of fluoroscopic tower, visual and manual quality control check for, 54
Motorized synchronous top for exposure timing, 95, 108–109
for linearity of x-ray generator, 119
mR/mAs, x-ray generators and, 97–102, 115–119, 120, 121
Multiformat cameras, see Video hard-copy cameras

National Electrical Manufacturers Association (NEMA), focal spot size of x-ray tube and, 69, 70, 83
Nine-penny test, 52, 58–60
Noise, in fluoroscopic imaging, 128, 144, 145, 146, 147
Nongrid fluoroscopy, lowering exposure rate, 191–192

Off-focus radiation, mR/mAs measurement and, 100
"On-the-fly" modes, video hard-copy cameras and, 176
Operating level, 21–22
Oscilloscope
video waveform monitoring with, 156, 157
for x-ray output waveforms, 96, 112
Output waveform, from x-ray generator, 96–97, 111–115
Overhead crane movement, visual and manual quality control check for, 53
Overload protection
visual and manual quality control check for, 54
x-ray tube and, 69, 78–79
Overtake fluoroscopic system, maximum fluoroscopic exposure rate for, 134, 138
Overtake x-ray tube, half-value layer measurement of, 91–92
Panel switches, visual and manual quality control check for, 54
Park position interrupt, visual and manual quality control check for, 54
“Pass-fail” tests, visual and manual quality control checks as, 51, 53–55
Patient equivalent phantom (PEP), 7–11, 12–13
for basic homogeneous phantom test, 52, 60–62
for fluoroscopic images, 144
mR/mAs values change and, 97–98, 99
for phototimer, 120
for standard fluoroscopic exposure level, 136
PBL, see Positive beam limitation systems
Peak video voltage, 157, 159
Pelvis phantom, 8, 9
Pen-type dosimeters, see Dosimeter
PEP, see Patient equivalent phantom
Perpendicularity of x-ray beam, 85–89
visual and manual quality control check for, 53
pH and developer activity, 37
Phantoms
extremity, 8–10
pelvis, 8, 9
skull, 8, 9
tomographic, 161, 165, 166, 168
water, 60
see also Patient equivalent phantom
Photofluorospot (PFS) film units, phototiming system checked for, 121
Photofluorospot film cameras lowering exposure rate of, 191–192
resolution, 128, 151–152
setting and maintaining exposure of, 128, 146–147
Photographic processing equipment
cleaning and maintenance, 37, 39, 41, 47–48
daily quality control program for, 35–38, 44–47
cross-over of control emulsions, 38
dip test, 38
for mechanized film processors, 38–39, 45–47
procedure, 44–47
flood replenishment, 40–41, 48–49
proof with, 33
purchasing, 33–34
standby kit for, 38
wash water temperature for, 36–39
Photographic processor control chart for, 21
operating level for, 21–22
Phototimer, 102, 119-123
Physicist, role of in quality control, 3-4
Pinhole cameras, 69, 70, 82-84, 85
Pinhole trace technique, 162, 166, 167, 169
Portable radiographic equipment, 161, 163-164
Positive beam limitation (PBL) systems, 86
Field size vs. cassette size for, 89
Power assists, visual and manual quality control check for, 54
Preventive maintenance, 5
Processing equipment, see Photographic processing equipment
Product comparisons, image quality tests for, 176-178, 182-186
Product evaluation, attenuation measurement test for, 178-179, 186-188
Quality assurance committee for, 3
definition, 1
people needed for, 4
reason for, 2
time needed for, 4
Quality control
control charts, 20-23, 25-26
definition, 1
engineer's role in, 3-4
measurement charts, 19-20
objectives, 19
people needed for, 4
physicist's role in, 3-4
reason for, 2
responsibility for, 2-3
room logs, 22, 24, 26
technologist's role in, 3-4
time needed for, 4
Quality control monitoring, video hard-copy cameras for, 181-182
"Quality Control Procedure," of room log, 22
Quality Control Room Logs, 26
Quantum noise, in fluoroscopic images, 128, 144
Random error, 20
RAP, see Reject-Repeat Analysis Program
Raster blending, 176, 177, 178
Rate dependence, of ionization chambers, 11
Rating charts, for x-ray tubes, 69, 72-78
Reject analysis, 29-30
Reject-Repeat Analysis Program (RAP), 27
guidelines for, 27-29
procedures, 31-32
reject analysis, 29-30
reject rates, 27, 28, 30, 32
Rejects, 27
see also Reject-Repeat Analysis Program
Repeat films, 27
see also Reject-Repeat Analysis Program
Repeatability, of x-ray generator, 98, 101-102, 115, 116-119
Roll-film angiographic equipment, 170-171
Room logs, 22, 24, 39
Room-to-room consistency, of x-ray tube output, 99, 116
Safelight, fog caused by, 34
Screen
dosimeter for evaluating, 11
screen-film contact test, 51-52, 55-58
Seasoning tanks, 39, 41
Semi-logarithmic graph paper
half-value layer measurements plotted on, 71, 93
Sensistrips, 36, 37, 38
Sensitometer
sensistrips and, 36
step wedge for photographic processor quality control program exposed with, 36-37
Service contract, 5
Service engineer, equipment tested before leaving, 180, 192-193
see also Engineer
Service request form, 12-13
Shoulder rests, visual and manual quality control check for, 54
SID, see Source-to-image distance
Single exposure rating, for x-ray tube, 72-73
Skull phantom, 8, 9
Solid-state detector, for x-ray output waveform, 96, 112
Source-to-image distance (SID) heel effect and, 16-17
visual and manual quality control check for indicator, 53
Source-to-tabletop distance, for mR/mAs, 100
Standard fluoroscopic exposure levels, 126, 136-138, 139, 140
Standby kit, for mechanized film processors, 38
Starter solution, for flood replenishment, 41
Start test pattern, for x-ray tube focal spot size, 69, 70, 79-82
Step stool, visual and manual quality control check for, 54
Step wedges, photographic processor quality control program and, 36, 37
Step wedge test, for generator linearity, 52, 65-67
Survey meter, 11, 14
Systematic error, 20
Systems cleaner, for photographic processing equipment, 37, 39, 48
Tabletops, dosimeter for measurement of attenuation, 11
Tabletop pads, attenuation measurements for, 186-188
Technique charts, visual and manual quality control check for, 54
Technologist, role of, in quality control, 3-4
Telescopied fluoroscopic systems, low-contrast fluoroscopic test for, 153-154
Television monitors, for fluoroscopic imaging systems, 127, 141-142
Timer device, for exposure timing, 96, 109-111
Tomographic phantom, 161, 165, 166, 168
Tomographic test tool, 161-162, 167
Tomography, 161-162, 164-169
basic tomography test for, 52, 62-65
Transmission, see Attenuation measurement
Tube crane locks, visual and manual quality control check for, 53
UCL, see Upper control limit
Ultrasound, video hard-copy camera, 175-176, 183
Undertable x-ray tube half-value layer measurement for, 92, 93-94
low-contrast fluoroscopic test for, 155
maximum fluoroscopic exposure rate for fluoroscopic system with, 134, 136, 137
Unexposed film, sensitivity of, 35
"Unsafe" light, in darkroom, 34
Upper control limit (UCL), 20, 21, 22

Videodisc recording system, for
fluoroscopic imaging
system, 127-128
Video hard-copy cameras,
175-176, 181-182, 183, 184
Video systems, for fluoroscopic
imaging systems, 135
see also Fluoroscopic imaging
systems
Videotape recording system, for
fluoroscopic imaging
system, 127, 128, 142-143
Video waveform monitoring, for
fluoroscopic imaging
systems, 129, 155-160
Viewboxes for films, 180
"Visual and Manual Quality Con-
trol Checks," in room log, 22

Visual quality control checks, 51,
53-55

Wash water temperature, for
photographic processor,
38-39
Water phantom, basic
homogeneous phantom
test, 60
Window, visual and manual qual-
ity control check for, 54

Xeroradiography, 102, 124
X-ray beam perpendicularity,
85-89
X-ray field, light field congruence
with, 70, 84-90, 91
test for, 52, 58-60
X-ray generator, 5, 95
calibration, 11
exposure timing of, 85-96,
107-111
kVp check of, 95, 104-106

linearity of, 52, 99, 101, 103, 115,
116-119, 120, 121
step wedge test for, 52, 65-67
mammography and, 103, 124
mR/mAs of, 97-102, 103,
115-119, 120, 121
operating level of, 21
phototimers for, 109, 119-123
technique selection for quality
control of, 102-103
xeroradiography and, 102, 124
x-ray output waveforms, 96-97,
111-115
X-ray output waveform, from x-ray
generator, 96-97, 111-115
X-ray tubes
focal spot size, 69-70, 79-84
half-value layer measurements
of, 70-71, 90-94
overload protection, 69, 78-79
rating charts, 69, 72-78
x-ray field, light field, Bucky
alignment and exposure
consistency and, 70, 84-90, 91